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Società Italiana di Fisica
Springer-Verlag 2001

Recoil-induced effects in a bidirectional ring laser

N. Piovella1,a, V. Villa1, R. Bonifacio1, B.W.J. McNeil2, and G.R.M. Robb2
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Abstract. We present a theoretical study of a bidirectional ring laser in which the active medium is a cold
atomic vapor. A novel feature of our analysis is the self-consistent description of the atomic motion due to
recoil. It is shown that the evolution of the two counter-propagating fields within the cavity can be very
different from that when recoil is neglected. We present an analytical study of the stationary unidirectional
and bidirectional emission solutions and an analysis of their stability for a given average atomic velocity
and Gaussian atomic velocity distribution. It is shown that the unidirectional emission solution is unstable
if either the average velocity or the velocity distribution width is larger than a specific threshold value. If
the mode frequency is resonant with the atoms, the symmetric bidirectional emission solution is stable. If
the mode frequency is blue-detuned, the laser emits unidirectional pulses alternately in opposite directions.
An initially inhomogeneously broadened medium in a blue-detuned ring laser experiences a continuous self-
cooling process, which may reduce the atomic temperature down to the Doppler cooling limit. A simple
analytical model interpreting the effect is presented.

PACS. 42.55.-f Lasers – 42.50.Vk Mechanical effects of light on atoms, molecules, electrons, and ions –
42.60.Mi Dynamical laser instabilities; noisy laser behavior

1 Introduction

In laser physics to date, the role of the translational mo-
tion of the particles comprising a gaseous active medium
in the lasing process has been limited to Doppler broad-
ening of the resonant transition. The effect of the laser
radiation on the particles’ translational motion through
recoil is usually completely neglected for radiation wave-
lengths in the optical region of the spectrum and longer.
In fact, at the usual temperatures of gaseous lasers, the
Doppler broadening inhibits any regular motion of atoms
due to atomic recoil. However, the continuous progress in
optical cooling and trapping of atomic vapors has demon-
strated the potentially important role of the mechanical
effects of light on atomic dynamics.

In particular, there has been considerable interest in
optical phenomena which can be directly related to atomic
recoil e.g. the collective atomic recoil laser (CARL) [1,2]
and recoil-induced resonances (RIR) [3,4]. In these phe-
nomena, a probe field experiences gain while interacting
with an ensemble of non-inverted two-level atoms that are
simultaneously driven by an off-resonant pump field. In
the CARL a collective instability leads to the formation of
a strong matter grating (bunching), consisting of a large
spatial modulation of the atomic density with a period
equal to half of the radiation wavelength. Similar effects
have been observed in theoretical studies of optical bista-
bility [5,6] and superfluorescence [7] in cold atomic vapors.
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Fig. 1. A schematic diagram showing the atomic sample op-
tically pumped and interacting with two counter-propagating
modes A1 and A2 in a bidirectional ring cavity.

Recently, the study of recoil-induced optical phenom-
ena has been extended [8,9] to a collection of inverted
free atoms interacting with two radiation fields counter-
propagating in a ring cavity, as schematically shown in
Figure 1. The dynamics of the atoms and radiation fields
are described using the semi-classical and one-dimensional
CARL model [10] for an ensemble of free atoms in which
a population inversion is induced by a transverse opti-
cal pump laser. A numerical study of these equations has
shown [8] that if the excited atoms are initially cold and
the effects of atomic recoil are treated self-consistently, the
dynamical behavior of the ring laser can be significantly
different from that when the effects of atomic recoil are
neglected.

Bidirectional ring lasers have been studied for many
years [11–13], in large part due to their application as laser
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gyroscopes. It is well known [12] that, neglecting recoil, a
homogeneously broadened ring laser admits two station-
ary solutions, a standing wave oscillation formed by two
counter-propagating modes of equal intensity and a trav-
elling wave oscillation consisting of a single-mode prop-
agating in one direction. The coupling between the two
modes is provided by the scattering from the spatial grat-
ing formed in the population difference. The bidirectional
solution is unstable and the unidirectional solution is sta-
ble if the cavity decay rates are equal and much smaller
than the atomic relaxation rates (good cavity limit). How-
ever, if the atoms are left free to recoil due to the radiation
emission [8], then the Doppler shift due to the average
atomic velocity affects the stability of the stationary solu-
tions. On resonance, the unidirectional solution becomes
unstable and the bidirectional solution stable, whereas
by detuning the frequency of the cavity mode above the
atomic resonance (“blue-detuning”), a pulsed regime may
occur, with unidirectional emission alternately in opposite
directions. When the frequency of the cavity mode is de-
tuned below the resonance (“red-detuning”), the effect of
recoil is to drive the laser below threshold.

This paper investigates in detail the effects of atomic
motion on the ring laser emission. The analysis includes
an analytical study of the stationary solutions and their
stability for a medium with homogeneous broadening (i.e.
cold atoms) and inhomogeneous broadening (i.e. with a
finite width of the initial velocity distribution). In par-
ticular, we demonstrate that on resonance, the bidirec-
tional solution is stable when the Doppler shift due to
the recoil velocity parallel to the field propagation axis,
k〈vz〉 (where k = ω/c is the radiation wavenumber), be-
comes comparable to the natural atomic linewidth, γ⊥,
such that the two modes can be considered uncoupled. A
similar mechanism is responsible for the pulsed emission
in the blue-detuned case. The analysis shows that in gen-
eral the ring laser allows for stationary unidirectional as
well as bidirectional emission, with equal mode intensities
(symmetric emission) or different mode intensities (asym-
metric emission). However, the stability of the stationary
solutions is strongly affected by the coherent motion in-
duced by recoil as well as by the incoherent motion due to
thermal velocity spread. We give a detailed picture of the
dependence of the laser stability on the main parameters
such as gain, detuning, mean velocity and velocity spread.
When the effect of the laser emission on the atomic motion
is considered in a medium with initial finite width of the
velocity distribution, we observe a novel self-cooling effect
within the inverted atomic system, with a narrowing of
the velocity distribution curve. When the laser is tuned
to resonance, self-cooling occurs only during the transient
between the unidirectional emission (unstable) and the
bidirectional emission (stable), leading to only a slight de-
crease of the atomic velocity spread. The self-cooling pro-
cess is much more efficient when the laser is blue-detuned.
Although in this case the atoms lase periodically in oppo-
site directions, the cooling process is independent of which
mode is emitted, and a monotonic decrease of the velocity
spread is observed. During the cooling process, the av-

erage atomic velocity oscillates around zero, making the
cooling trap translationally stable. For these reasons, the
method appears particularly promising for cooling a warm
gas, pumped with some “velocity-preserving” method (for
instance using a pump laser exciting the atomic sample in
a transverse direction with respect to the cavity propaga-
tion axes) to a very low temperature (near the Doppler
limit determined by momentum diffusion).

The paper is organized as follows: Section 2 describes
the background to the classical bidirectional ring laser
problem. Section 3 outlines the complete self-consistent
model for a system with population inversion and interact-
ing with two counter-propagating modes of a bidirectional
ring cavity. In Section 4 the general model is reduced, us-
ing a Fourier expansion in space of the internal atomic
variables, to two equations for the mode intensities, de-
scribing the laser dynamics for an assigned, constant state
of atomic motion. The stationary solutions of these equa-
tions are discussed in Section 5 and their stability is ana-
lyzed in Section 6. In Section 7 numerical calculations of
the self-consistent dynamics with recoil are presented and
compared with the analytical results, together with a sim-
ple analytical model interpreting the self-cooling process.
Finally, in Section 8 we shortly discuss the possibility of
an experimental observation of the predicted effects.

2 Background

Laser theory has attracted a large number of studies cen-
tered on the stability problem [14]. The motivations for
these studies were both theoretical, the laser equations
being simple enough that they can be derived from first
principles with a minimum of phenomenology, and prac-
tical, the laser stability being essential when the laser is
used as a tool in scientific or industrial applications. The
bidirectional operation of ring lasers is of particular inter-
est because of their use as gyroscopes [15] wherein the fre-
quencies of the two counter-propagating modes are split
by any rotation of the plane of the laser about an axis
normal to the plane. However, it is well known that in a
homogeneously broadened ring laser mode competition in-
duced by population grating formation suppresses one of
the modes [12]. A large class of studies [16] focussed on the
so-called “second-instability” of lasers in the “bad-cavity
limit”, i.e. when the cavity decay rate κc exceeds the
atomic spontaneous decay γ⊥, so that the usual adiabatic
elimination of the atomic variables is not valid. A rich class
of dynamical behaviors were found when the lasers are de-
tuned from resonance [17] or when unequal losses for the
two modes are produced inside the resonator [13]. In all
these studies the average motion of the center-of-mass of
the atoms due to recoil has been neglected, being masked
by the inhomogeneous broadening of the resonance due,
for a gas system, to the thermal Doppler motion.

The recent improved cooling methods of atomic sys-
tems has renewed interest in atom-field interactions at
low temperature, where the effects of atomic recoil can-
not be neglected. Indeed, dense samples of atoms in a
Bose-Einstein Condensate (BEC) are systems where the
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thermal broadening is almost completely absent [18]. For
these systems, the atomic motion is in general not classi-
cal, and a quantum model of CARL [19] should be used.
However, a classical description of the atomic motion in
BECs may still be used when the average number of pho-
tons scattered per atom is large [20]. Although until now
all experiments have been performed exposing the atomic
sample to off-resonant laser sources [21], in order not to
heat the system, it is reasonable to imagine that in the
near future it will be possible to perform laser experiments
with cold atoms in which a population inversion has been
produced.

3 Model

The model used to describe the interaction is one-
dimensional and semi-classical. The internal atomic dy-
namics (dipole moment and population difference) are
described in terms of a quantum-mechanical two-level sys-
tem and the external atomic dynamics (position and mo-
mentum) are treated classically, with the atoms as point
particles. The equations used to describe the atom-field
interaction within the cavity extend the usual Maxwell-
Bloch model [22] to self-consistently include the atomic
center-of-mass motion. This extended model was intro-
duced originally to describe CARL [1] and the sponta-
neous formation of a longitudinal density grating in a
cold atomic system irradiated by a detuned pump laser
[23]. For these reasons we refer to it as “the CARL
model”. It assumes that the radiation electric field is
the sum of two counter-propagating, linearly polarized
radiation modes of equal frequency ω = ck, E(z, t) =
E1(z, t)ei(kz−ωt) + E2(z, t)e−i(kz+ωt) + c.c., where z is the
propagation axis and subscripts 1, 2 refer to the clock-
wise and anti-clockwise propagating fields, respectively.
The two fields are close to resonance with the transi-
tion frequency ω0 = (Eb − Ea)/~ between the lower
state |a〉 and the upper state |b〉. The density matrix
elements ρmn, (m,n = a, b) describe the internal evolu-
tion of each atom, considered as a two-level system. The
off-diagonal elements (ρba = ρ∗ab) describe the polariza-
tion as induced by the counter-propagating fields. The
dipole moment along the polarization axis of the elec-
tric field is d = µ(ρab + ρba), where µ is the dipole
matrix element. The off-diagonal elements ρab may be
written conveniently as a sum of two polarization waves,
ρab = S1(z, t)ei(kz−ωt) + S2(z, t)e−i(kz+ωt).

Special attention should be given to the assumption
that a population inversion is obtained in the atoms. We
assume that the atomic system is closed, in the sense that
the sum of the populations of the energy levels involved
in the pumping cycle is conserved for each velocity sub-
class of atoms. We assume that the atoms consist of three-
level systems where only the transition between the two
excited levels |a〉 and |b〉 are driven by the two radiation
modes propagating within the cavity. Population inversion
is obtained by exposing the sample to a laser incident in a
transverse direction with respect to the z-axes (see Fig. 1)
and resonant with the transition between the ground state
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Fig. 2. A schematic en-
ergy level diagram of
the atoms.

|g〉 and the upper state |b〉, with a pump rate λ (see Fig. 2).
We define D = ρbb − ρaa as the population difference be-
tween the upper |b〉 and lower |a〉 states involved in the
interaction, Deq as the equilibrium value in the presence
of the pump laser alone and γ‖ the relaxation rate of the
population difference. The explicit expression of Deq and
γ‖ are given in Appendix A.

Use of the definitions above in the Bloch equa-
tions describing the two-level atomic system, the equa-
tion for the force on the atom at z = z(t), F (t) =
d [∂zE(z, t)]z=z(t), and the Maxwell wave equations, yield
the CARL equations [10]:

dS1(θ, t)
dt

= −γ⊥[1−i(δ−β)]S1(θ, t)−i
µ

~
D(θ, t)E1(t) (1)

dS2(θ, t)
dt

= −γ⊥[1−i(δ+β)]S2(θ, t)−i
µ

~
D(θ, t)E2(t) (2)

dD(θ, t)
dt

= −γ‖[D(θ, t) −Deq]

−2i
µ

~

{
E1(t)∗

[
S1(θ, t) + S2(θ, t)e−iθ

]
+E2(t)∗

[
S2(θ, t) + S1(θ, t)eiθ

]
− c.c.

}
(3)

dθ
dt

= 2γ⊥β (4)

dβ
dt

= −i
ωrµ

2γ⊥~
{
E1(t)∗

[
S1(θ, t) + S2(θ, t)e−iθ

]
−E2(t)∗

[
S2(θ, t) + S1(θ, t)eiθ

]
− c.c.

}
(5)

dE1(t)
dt

= i
ωnµ

2ε0

〈
S1(θ, t) + S2(θ, t)e−iθ

〉
− κcE1 (6)

dE2(t)
dt

= i
ωnµ

2ε0

〈
S2(θ, t) + S1(θ, t)eiθ

〉
− κcE2. (7)

In these equations θ = 2kz is the scaled atomic coordinate,
β = kvz/γ⊥ is the scaled atomic velocity, δ = (ω−ω0)/γ⊥
is the scaled field-atom detuning, ωr = 2~k2/M is the
recoil frequency, γ⊥ and γ‖ are the decay rates of polar-
ization and population difference, respectively, M is the
atomic mass, n = ns(Ls/Lcav) is the ‘reduced’ atomic den-
sity in the cavity, ns is the atomic density of the sample,
Ls is the sample length and Lcav is the cavity length.
In deriving equations (1–7) we have assumed that the
mean field limit can be applied when describing the evo-
lution of the two modes circulating in the cavity. Cav-
ity losses are assumed to be equal for both modes and
κc = −(c/Lcav)ln(R) = ω/2Q is the loss rate for a cavity
with reflection coefficient R and quality factor Q. It has
been assumed that the radiation frequency coincides with
that of a mode of the cavity i.e. ω = ω(m) = 2πmc/Lcav

where m is an integer. The atoms are labeled by their
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initial position and velocity, θ0 and β0, and the mean in
the equations (6, 7) is defined as

〈X(θ, β)〉 =
1

2π

∫ 2π

0

dθ0

×
∫ ∞
−∞

dβ0f(β0)X(θ(θ0, p0, t), β(θ0, β0, t)). (8)

We assume that the initial phases θ0 are uniformly dis-
tributed over 2π and that the velocities are Doppler-
broadened with a Gaussian distribution f(β0) =
(1/σ
√

2π) exp[−β2
0/2σ2], where σ = kσv/γ⊥ and σv =√

kBT/M is the standard deviation of the velocity along
the cavity axis, kB is the Boltzmann’s constant and T the
gas temperature.

From equations (1–7) it is possible to obtain the equa-
tions for the rate of exchange of average momentum, en-
ergy and momentum spread:

d
dt

(
2
γ⊥
ωr
〈β〉+N1 −N2

)
= −2κc(N1 −N2) (9)

d
dt

(
〈D〉

2
+N1 +N2

)
=

−
γ‖
2

(〈D〉 −Deq)− 2κc(N1 +N2) (10)

d
dt

[
γ⊥
ωr
〈β2〉+ (δ − 2εΩ1)N1 + (δ − 2εΩ2)N2

]
=

− 2
{

[δ − (1 + ε)Ω1]N1 + [δ − (1 + ε)Ω2]N2

}
(11)

where N1,2 = 2ε0|E1,2|2/~ωn is the average number of
emitted photons per atom in modes 1 and 2, respectively,
ε = κc/γ⊥, Ω1,2 = κ−1

c φ̇1,2, and φ̇1,2 is the time derivative
of the phase of the complex amplitudes E1,2 = |E1,2|eiφ1,2 .
Equations (9, 10) follow from the conservation of momen-
tum and number of excitations. Equation (11) connects
the velocity spread σ = (〈β2〉 − 〈β〉2)1/2 to the frequency
shift Ω1,2 and will be important in the discussion of the
self-cooling mechanism (see Sect. 7.2).

4 Analysis

Preliminary results showing the effects of recoil in a ring
laser were obtained solving equations (1–7) numerically for
a cold atomic vapor [8]. In particular, the numerical simu-
lations showed that the spontaneous formation of a density
grating (i.e. bunching) along the cavity axis (fundamental
in CARL-like effects and responsible for the pump-probe
gain mechanism in CARL), does not play an important
role in a ring laser. In fact, a density grating forms only in
the transient regime and it becomes negligible after satu-
ration. This occurs for two main reasons: initially the emis-
sion is bidirectional, and the pendulum potential resulting
from interference of the two counter-propagating fields of
equal intensity bunches the atoms. However, the bidirec-
tional emission becomes unstable near saturation, and one
of the two fields is suppressed by mode competition [12].

As a consequence, the atoms are no longer trapped by
the potential and the bunching rapidily disappears. The
second mechanism which destroys the bunching also dur-
ing bidirectional emission is due to the modulation of the
population difference D which deforms the pendulum po-
tential, flattening its minimum and allowing the atoms to
spread out in position.

The aim of this paper is twofold: (1) to give an analyti-
cal description of the effect of the atomic motion in a ring
laser; (2) to extend the analysis to an inhomogeneously
broadened (i.e. Doppler broadened) medium. The first
goal is obtained introducing approximations and assump-
tions that reduce the basic equations to a low-dimensional
model for only the two radiation mode intensities, the av-
erage atomic velocity and the velocity spread. This al-
lows us to study the stationary solutions and the stability
of the two radiation modes analytically for a given (i.e.
fixed) atomic motional state. Then, the results are com-
pared with the numerical solution of the basic equations.
Three main approximations are assumed: (a) no density
modulation occurs during the long-term evolution of the
ring laser, i.e. the atomic phases θ are assumed always uni-
formly distributed over 2π; (b) the cavity loss κc is much
less than the atomic linewidths γ⊥ and γ‖ (“good-cavity
limit”); (c) the velocity distribution remains always Gaus-
sian, i.e. the interaction with the electromagnetic fields
changes only the average velocity 〈β〉 and the distribution
width σ and not the Gaussian shape of the velocity distri-
bution. We note that assumption (a) is fundamental in or-
der to obtain an analytical description of the effects of the
average and thermal motions on the laser emission, and
is justified by numerical evidence. The second assumption
(b) allows for the adiabatic elimination of the two atomic
polarizations and population inversion. Finally, the last
assumption (c), perhaps the most difficult to be accepted
on the basis of theoretical or intuitive arguments, will be
tested numerically comparing the results of the reduced
model with those obtained from the exact equations. We
note that assumption (c) does not influence the analyti-
cal results, which are obtained for a given (i.e. uniform)
motional state. Then, the dynamics with recoil are in-
vestigated by integrating the exact equations numerically.
However, if assumption (c) is valid, it can allow for a use-
ful reduction of the exact equations to a low-dimensional
model.

We begin our analysis introducing S1,2 =
s1,2 exp(iφ1,2), so that equations (1–3, 6, 7) become:

ṡ1(θ, t) = −γ⊥(1− iδ1)s1(θ, t)− i
µ|E1|
~

D(θ, t) (12)

ṡ2(θ, t) = −γ⊥(1− iδ2)s2(θ, t)− i
µ|E2|
~

D(θ, t) (13)

Ḋ(θ, t) = −γ‖(D(θ, t) −Deq)

−2i
µ

~
[
|E1|

(
s1 + s2 e−iψ

)
+|E2|

(
s2+s1 eiψ

)
−c.c.

]
(14)

˙|E1| = −
ωnµ

2ε0
Im
〈
s1 + s2 e−iψ

〉
− κc|E1| (15)

Ω1|E1| =
ωnµ

2κcε0
Re
〈
s1 + s2 e−iψ

〉
(16)
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dx1,2

dτ
+ x1,2 =

Z
dβ

�
f(β)g1,2 [x1,2 +

√
x1x2 (Re(z0)∓ δ1,2Im(z0))]

1 + g1x1 + g2x2 +
√
x1x2 [(g1 + g2)Re(z0) + (δ2g2 − δ1g1)Im(z0)]

�
, (36)

Ω1,2x1,2 =

Z
dβ

�
f(β)g1,2 [δ1,2x1,2 +

√
x1x2 (δ1,2Re(z0)± Im(z0))]

1 + g1x1 + g2x2 +
√
x1x2 [(g1 + g2)Re(z0) + (δ2g2 − δ1g1)Im(z0)]

�
, (37)

˙|E2| = −
ωnµ

2ε0
Im
〈
s2 + s1 eiψ

〉
− κc|E2| (17)

Ω2|E2| =
ωnµ

2κcε0
Re
〈
s2 + s1 eiψ

〉
(18)

where a dot indicates the derivative with respect to t,
ψ = θ+ φ1 − φ2 and δ1,2 = δ ∓ β − εΩ1,2 are the effective
atom-field detunings. We observe that the atomic motion
introduces rapid temporal variations in the functions s1,
s2 and D, making the solution much more complicated
than the case when the atomic motion is neglected. Al-
though these temporal variations are averaged in the field
equations (15–18), their presence considerably modifies
the solution. To treat the problem with a rapid varying
phase ψ, we expand s1, s2 and D in Fourier series [11]:

s1 =
+∞∑
−∞

pneinψ (19)

s2 =
+∞∑
−∞

qneinψ (20)

D =
+∞∑
−∞

dneinψ, (21)

where d∗n = d−n because D is real. Inserting these in equa-
tions (12–14), and assuming ṗn � γ⊥pn, q̇n � γ⊥qn and
ḋn � γ‖dn, yields

pn = −i
µ|E1|
~γ⊥

dn
1− i[δ1 − nΩ]

(22)

qn = −i
µ|E2|
~γ⊥

dn
1− i[δ1 + (1− n)Ω]

(23)

and

(1 + inγΩ)dn = Deqδn,0

− 2i
µ

~γ‖
[
|E1|(pn − p∗−n + qn+1 − q∗1−n)

+|E2|(qn − q∗−n + pn−1 − p∗−1−n)
]
, (24)

where Ω = ψ̇ = 2β + ε(Ω1 − Ω2), γ = γ⊥/γ‖ and we
used the relation δ2 = δ1 + Ω. Let us now introduce the
complex coefficients:

αn = 1 + inγΩ + g1[x1Ln,−n + x2L1+n,1−n] (25)
βn = g1

√
x1x2Ln,1−n, (26)

where

x1,2 =
8ε0κc|E1,2|2
~ωnDeqγ‖

=
4κcN1,2

γ‖Deq
(27)

are the dimensionless intensities of the mode 1 and 2,
respectively,

g1,2 =
g0

1 + δ2
1,2

(28)

are the gain to loss ratios relative to the two modes, g0 =
ωnµ2Deq/2ε0~γ⊥κc and

Ln,m =
1 + δ2

1

2

[
1

1 + i(δ1 + nΩ)
+

1
1− i(δ1 +mΩ)

]
·

(29)

With these definitions and equations (22) and (23), equa-
tion (24) can be written as:

αndn = Deqδn,0 − (βndn−1 + βn+1dn+1) . (30)

In particular, for n = 0, α0d0 = Deq−2Re(β1d1). Dividing
by dn, for n 6= 0, and introducing the new unknown zn =
dn+1/dn, equation (30) yields

zn−1 =
−βn

αn + βn+1zn
· (31)

Setting n = 1 and iterating equation (31), we obtain
an expression for z0 in the form of an infinite continued
fraction [24]:

z0 =
−β1

α1+
−β2

α2+
· · · (32)

Once z0 is calculated numerically using an iterative
method, it is possible to evaluate all the other Fourier
components dn of the population difference:

d0 =
Deq

α0 + 2Re(β1z0)
(33)

d1 = d0z0 (34)

dn+1 = −βndn−1 + αndn
βn+1

· (35)

Finally, using the relations

1
2π

∫ 2π

0

dψ(s1 + s2 e−iψ) = p0 + q1

1
2π

∫ 2π

0

dψ(s2 + s1 eiψ) = q0 + p−1

and (22, 23), equations (15–18) give:

see equations (36, 37) above,

where we have introduced the dimensionless cavity time
τ = 2κct. The usual approximation in which the popula-
tion difference and the two polarization waves are adia-
batically eliminated has been generalized to their Fourier
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amplitudes, in order to describe the effects of the atomic
motion. The assumption that the Fourier amplitudes pn,
qn and dn are slowly varying is justified by the fact that
the rate of change of the fields is of the order of κc and
we assume κc � γ⊥, γ‖. The original equations have been
reduced to a set of two differential equations for the mode
intensities x1 and x2 and two algebraic equations for the
phase shifts Ω1 and Ω2, together with the equations for
the atomic center-of-mass motion (4, 5). The problem may
be further approximated assuming that the velocity distri-
bution, f(β), does not change its shape appreciably when
the atoms vary their velocity β due to recoil. Because the
active medium is an atomic gas, Doppler broadening im-
poses that f(β) is a Gaussian function with center 〈β〉
and variance σ2 = 〈β2〉 − 〈β〉2, whose evolution is given
by equations (9) and (11). We limit the analysis to the
“good cavity” regime, κc � γ⊥, in which the frequency
shifts Ω1,2 have a negligible effect on the laser emission.
In fact, from equations (36) and (37), it follows that Ω1,2

is of the order of δ1,2, so that, for ε� 1, δ1,2 ≈ δ ∓ β and
Ω ≈ 2β. Equations (9) and (11) can be written, for ε� 1
and introducing the dimensionless intensities (27), in the
form:

(d/dτ)[τrβ0 + x1 − x2] = −x1 + x2 (38)

(d/dτ)[(τr/2)(σ2 + β2
0) + δ(x1 + x2)] =

− [(δ −Ω1)x1 + (δ −Ω2)x2], (39)

where β0 = 〈β〉 and τr = (4γ/Deq)(2κc/ωr) is the recoil
time in units of the cavity time, (2κc)−1. The assumption
that the atomic velocities remain normally distributed
also when the atoms experience recoil is reasonably true
when the atomic positions are uniformly distributed, i.e.
no bunching is present. Otherwise space-velocity correla-
tions will strongly modify the velocity distribution f(β).
Neglecting other mechanisms (e.g. momentum diffusion)
that could appreciably change the velocity distribution, it
is reasonable to assume that atomic recoil influences only
the first two moments of the distribution, i.e. β0 and σ.
Hence, an approximated description of the dynamical evo-
lution of the two laser modes and of the atomic motion in
a ring laser can be obtained by solving the reduced system
of equations (36–39). We will check this point numerically
in Section 7.

In the following, we discuss the stationary solutions
of equation (36) and their stability in the presence of an
uniform atomic motion, for a homogeneously and inho-
mogeneously broadened medium. In the former case, we
assume cold atoms, with f(β) = δ(β − β0). In the second
case, we assume a gas sample with Doppler broadening,
described by

f(β) =
1

σ
√

2π
e−(β−β0)2/2σ2

. (40)

The solutions will be studied as a function of the following
four parameters characterizing the ring laser operation:
g0, δ, β0 and σ. The aim of this study is to investigate
the effect of a given atomic motion (i.e. with constant

velocity) on the ring laser operation. The results of this
analysis will be useful to understand in Section 7 the self-
consistent dynamics with recoil, where the atomic motion
evolves under the influence of the radiation fields.

5 Stationary solutions

Equation (36) admit in general two distinct classes of
non-trivial stationary solutions: the unidirectional solu-
tion, with either x1 = 0 or x2 = 0, and the bidirectional
solution, with both x1 and x2 different from zero. Fur-
thermore, the bidirectional solution may be symmetric,
with x1 = x2, or asymmetric, with x1 6= x2. We discuss
each stationary solution separately. Before proceeding, we
note that x2 is a solution of the same equation as that for
x1 with the sign of δ changed. In fact, if δ → −δ, then
δ1 → −δ2 and the equation (36) for the modes 1 and 2
coincide. Hence, it will be sufficient to solve the equation
for x1 alone and obtain x2 from x1 just changing the sign
of δ.

5.1 Unidirectional solution

Assuming x2 = 0 in equation (36), the stationary solution
x1 is the solution of the following implicit equation,

1 = g0

∫
dβ

f(β)
1 + g0x1 + (δ − β)2

· (41)

Using equation (41) in equation (37), we obtain

Ω1 = δ − g0

∫
dβ

βf(β)
1 + g0x1 + (δ − β)2

· (42)

From (41) and (42) we observe that in the limit of large
gain, g0 � 1, x1 ≈ 1 and Ω1 ≈ δ − β0. For homogeneous
broadening, i.e. f(β) = δ(β − β0),

x1 = 1− 1 + (δ − β0)2

g0
(43)

and Ω1 = δ − β0, whereas for Doppler broadening, with
f(β) given by equation (40), x1 is the solution of the im-
plicit equation [25]

ξσ = g0

√
π

2
Re W

(
δ − β0 + iξ√

2σ

)
(44)

and, from (42),

Ω1 = δ − β0 −
g0

σ

√
π

2
Im W

(
δ − β0 + iξ√

2σ

)
, (45)

where W is defined by W (z) = exp(−z2)erfc(−iz) and
ξ =
√

1 + g0x1.



N. Piovella et al.: Recoil-induced effects in a bidirectional ring laser 371

5.2 Symmetric bidirectional solution

A detailed discussion about the properties of the bidirec-
tional solution is contained in Appendix B. The main re-
sult is that when δ = 0 and the laser is above threshold,
the symmetric bidirectional solution (with x1 = x2 = x)
is always a stationary solution of equation (36). It is a
stationary solution also for δ 6= 0, but only for the case of
homogeneous broadening and stationary atoms (β0 = 0).
In this last case, equation (31) is independent of the index
n and z0 can be evaluated explicitly. A straightforward
calculation gives

x =
1
2

[
1− 1

4g1

(
1 +

√
1 + 8g1

)]
,

where now g1 = g0/(1+δ2). For the case of inhomogeneous
broadening and δ = 0, x is the solution of the implicit
equation

1 = g0

∫
dβf(β)

1 + Z(β)
1 + β2 + 2g0x[1 + Z(β)]

, (46)

where Z(β) = Rez0 + βImz0. We observe that for large
gain (g0 � 1), x ≈ 1/2. For homogeneous broadening,
equation (46) can be written as

x =
1
2

{
1− 1 + β2

0

g0[1 + Z(β0)]

}
· (47)

5.3 Asymmetric bidirectional solution

The asymmetric bidirectional solution, with both x1 and
x2 different from zero and x1 6= x2, can be a stationary
solution for homogeneous broadening if both δ and β0 are
different from zero, and for inhomogeneous broadening if
δ is different from zero. It can also be a solution for an
inhomogeneously broadened laser with δ = 0, if x1 and x2

satisfy the following system of equations:

1 = g0

∫
dβ

f(β)
1 + β2 + g0[x1 + x2 + 2

√
x1x2Z(β)]

(48)

0 =
∫

dβ
f(β)Z(β)

1 + β2 + g0[x1 + x2 + 2
√
x1x2Z(β)]

· (49)

Figure 3 shows the asymmetric bidirectional solution for
homogeneous broadending and g0 = 50, obtained by itera-
tion of the stationary equation (36) with dx1,2/dτ = 0: the
mode amplitudes x1 (continuous line) and x2 (dashed line)
are plotted against δ for β0 = −3 (Fig. 3a) and against
β0 for δ = −1 (Fig. 3b). The dotted lines indicate the two
unidirectional solutions, x1 = 1 − [1 + (δ − β0)2]/g0 and
x2 = 0 (on the left), and x2 = 1− [1 + (δ + β0)2]/g0 and
x1 = 0 (on the right). We observe that the asymmetric
bidirectional solution exists only for certain values of δ
and β0. In Figure 3a it exists for −1.45 < δ < 1.45, as
a transition between the symmetric bidirectional solution
(for δ = 0) and the unidirectional solution (for |δ| > 1.45).

-10 -8 -6 -4 -2 0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

(b)

(a)

 

x 1,
2

β0

-10 -8 -6 -4 -2 0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

 

δ

x 1,
2

Fig. 3. Stationary asymmetric bidirectional solution for ho-
mogeneous broadening and g0 = 50: x1 (continuous line)
and x2 (dashed line) (a) vs. δ for β0 = −3 and (b) vs.
β0 for δ = −1; dotted lines: unidirectional solutions x1,2 =
1− [1 + (δ ∓ β0)2]/g0.

In Figure 3b the asymmetric bidirectional solution exists
between |β0| = 2.85 and the laser threshold, |β0| = 8, for
which x1,2 = 0.

For inhomogeneous broadening, the case δ = 0 and
β0 = 0 is of particular interest, as it refers to a case of
pure thermal motion, with no drift due to recoil. More-
over, we have seen above that in this case the symmetric
bidirectional solution is also a possible stationary solution.
Figure 4a shows the mode amplitudes x1 (continuous line)
and x2 (dashed line) as a function of σ, for g0 = 50, δ = 0
and β0 = 0. For σ = 0, x2 = 0 and the solution is unidi-
rectional. Increasing σ, the previously suppressed mode x2

grows until it reaches the same level as the mode x1 and
the solution becomes symmetric. Figure 4b shows x1 and
x2 as functions of β0 for δ = 0, σ = 3 and g0 = 50. We ob-
serve that increasing β0, the asymmetric bidirectional so-
lution eventually becomes symmetric, with x1 = x2 when
|β0| > 4.5.
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Fig. 4. Stationary asymmetric bidirectional solution for in-
homogeneous broadening with Gaussian velocity distribution,
g0 = 50 and δ = 0: x1 (continuous line) and x2 (dashed line)
(a) vs. σ for β0 = 0 and (b) vs. β0 for σ = 3.

6 Stability analysis

6.1 Stability of the unidirectional solution

In order to investigate the stability of the unidirectional
solution for uniform atomic motion, we linearise equa-
tion (36) assuming x1 = x10 + ε1(τ) and x2 = ε2(τ),
where ε1,2 are small, time-dependent quantities and x10

is the stationary unidirectional solution. Expanding the
r.h.s. of equation (36) up to the first power of ε1 and ε2,
a straightforward calculation yields

dε1
dτ

= −x10

∫
dβ

g2
1f(β)

(1 + g1x10)2

×
{
ε1 +

[
(1 + g1x10) (ReC1 − δ1ImC1)

+
(

1 + δ2
1

1 + δ2
2

− 2g1x10ReC2

)]
ε2

}

dε2
dτ

=
{
− 1+

∫
dβ

g1f(β)
1+g1x10

(
1+δ2

1

1+δ2
2

)
×
[
1−g1x10 (ReC1+δ2ImC1)

]}
ε2

where

C1 =
L1,0

1 + i2γβ + g1x10L1,−1

and C2 = L1,0C1. The two eigenvalues of the linear prob-
lem are

λ1 = −x10

∫
dβ

g2
1f(β)

(1 + g1x10)2
(50)

and

λ2 = −1 +
∫

dβ
g1f(β)

1 + g1x10

(
1 + δ2

1

1 + δ2
2

)
×
[
1− g1x10 (ReC1 + δ2ImC1)

]
. (51)

The unidirectional solution is stable if both the eigenvalues
are negative, whereas it is unstable if at least one eigen-
value is positive. From (50) and (51), it can be shown
that λ1 is always negative, whereas λ2 can be positive for
appropriate values of δ, β0 and σ. We observe that λ2 is
invariant under the sign inversion of both δ and β0 and
in particular is symmetric with respect to β0 when δ = 0.
Figures 5a and 5b show contour lines of λ2, for homoge-
neous broadening, (a) as a function of mean atomic veloc-
ity, β0, and atom-field detuning, δ, for a case of high-gain
(g0 = 50), and (b) as a function of β0 and gain g0 when
δ = 0. Here and in all the cases below, we assume, where
not explicitly stated, that γ = 1. The dark gray regions
in Figure 5 correspond to regions where the laser is below
threshold (g1 < 1) and the unidirectional solution does
not exist. The light gray color indicates the region where
λ2 is negative, i.e. the unidirectional solution with x2 = 0
is stable. The stability of the other unidirectional solution,
with x1 = 0, can be obtained from Figure 5 by changing
the sign of δ. What can be deduced from Figure 5a is
that for β0 = 0 (atoms at rest) the unidirectional solu-
tion is stable for all values of the atom-field detuning δ.
Increasing β0, one or both of the unidirectional solutions
become unstable for β0 larger than a definite threshold
value, which depends on δ and the gain g0. At resonance
(δ = 0) the two unidirectional solutions are both unsta-
ble for |β0| larger than the threshold value, independently
of the direction of the atomic motion. For positive (nega-
tive) detuning, the instability rate is larger for the mode
propagating parallel (anti-parallel) to the atomic beam.
We note that for a sufficiently large value of δ one of the
two unidirectional solutions is stable, as may be observed
in Figure 5a. This suggests a natural method to obtain
truly unidirectional operation, with the laser emitting in
one direction independent of the initial conditions.
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λ2 = −(g1 − 1)

�
(1 + 9β2

0)[1− (1 + 4γ)β2
0 + (g1 − 1)(1 + β2

0)(1 + 7β2
0)]

[1 + 9β2
0 + (g1 − 1)(1 + 5β2

0)]2 + 4β2
0 [γ(1 + 9β2

0)− (g1 − 1)(1 + 3β2
0 )]2

�
, (52)
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Fig. 5. Contour plot of the instability rate λ2 of the unidirec-
tional solution in a homogeneously broadened ring laser, (a) as
a function of β0 and δ for g0 = 50 and (b) as a function of β0

and g0 for δ = 0.

The eigenvalue λ2 may be calculated explicitly for the
resonant case δ = 0 and for a homogeneously broadened
medium as:

see equation (52) above,

where now g1 = g0/(1 + β2
0). We note that for β0 = 0

(atoms at rest), λ2 = −(g1 − 1)/g1 and the unidirectional
solution is stable. Near the laser threshold, g1 ≈ 1, the
unidirectional solution is unstable for β0 > 1/

√
1 + 4γ,

whereas when γ = 1 it is unstable for

7g0 − 4 +
√

16 + 152g0 + 49g2
0

104
< β2

0 < g0 − 1, (53)
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Fig. 6. Evolution of x1 (continuous line) and x2 (dashed
line) vs. τ in a homogeneously broadened ring laser, for g0 = 50
and different values of δ and β0. A: δ = 0 and β0 = 0; B: δ = 0
and β0 = −3.5; C: δ = −1 and β0 = −3.5; D: δ = 1 and
β0 = −2.5.

as shown in Figure 5b. For large g0, the threshold value
of the mean atomic velocity is β0 ≈ 0.37

√
g0.

When the unidirectional solution with x2 = 0 is unsta-
ble, the laser evolves towards a different stationary solu-
tion, i.e. the symmetric bidirectional solution when δ = 0
or the asymmetric bidirectional solution or unidirectional
solution with x1 = 0 when δ > 0. Figure 6 shows the
evolution of x1 (continuous line) and x2 (dashed line) as
a function of τ for homogeneous broadending, g0 = 50
and different values of atom-field detuning, δ, and mean
atomic velocity, β0. The results are obtained by integrat-
ing equations (1–7) when the effects of recoil are artificially
“switched off” by setting dβ/dt = 0 and β(0) = β0 con-
stant. As a physical example of parameters, we assumed
a sodium sample with resonant wavelength λ = 589 nm,
µ = 10−29 C m, γ⊥ = γ‖ = 10κc = 108 s−1, Deq = 1/2
and n = 6× 108 cm−3. In A, δ = 0, β0 = 0 and the initial
field intensity are x1(0) = x2(0)+10−22 and x2(0) = 10−6:
the symmetric bidirectional solution is unstable, whereas
the unidirectional solution with x2 = 0 is stable. We note
that, since the ring laser has no preferred direction, it
can oscillate in either of the modes as determined by ini-
tial fluctuations. In B, the atoms are now moving in the
negative-z direction (β0 = −3.5), and δ = 0, x1(0) = 10−6

and x2(0) = 10−58: in this case the unidirectional solution
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Fig. 7. Contour plot of the instability rate λ2 of the unidi-
rectional solution in an inhomogeneously broadened ring laser
with Gaussian velocity distribution and g0 = 50, (a) as a func-
tion of β0 and δ for σ = 3, and (b) as a function of β0 and σ
for δ = 0.

is unstable whereas the symmetric bidirectional solution
is stable. Different behaviors occur when the laser is de-
tuned. In C, δ = −1, β0 = −3.5 and x1(0) = x2(0) = 10−6:
the gain rates g1 and g2 are different and the two modes
saturate at different levels (asymmetric bidirectional so-
lution). In D, δ = 1, β0 = −2.5, x1(0) = 10−6, and
x2(0) = 10−22: due to a larger initial seed, the mode x1

saturates before the mode x2. However, the unidirectional
solution with x2 = 0 is unstable, whereas that with x1 = 0
is stable, so a mode exchange occurs.

Figure 7 shows that inhomogenoues broadening signifi-
cantly modifies the stability of the unidirectional solution.
Figures 7a and 7b show the contour lines of λ2, for inho-
mogeneous broadening and g0 = 50, (a) as a function of
β0 and δ when σ = 3 and (b) as a function of β0 and σ
when δ = 0. As before, the dark gray color corresponds
to the laser below threshold and the light gray color to
the stability of the unidirectional solution with x2 = 0.
Figures 8a and 8b show the contour lines of λ2, for in-
homogeneous broadening and stationary atoms (β0 = 0)
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Fig. 8. Contour plot of the instability rate λ2 of the unidi-
rectional solution in an inhomogeneously broadened ring laser
with Gaussian velocity distribution and β0 = 0, (a) as a func-
tion of δ and σ for g0 = 50 and (b) as a function of σ and g0

for δ = 0.

(a) as a function of δ and σ for g0 = 50, and (b) as a func-
tion of σ and g0 when δ = 0. We observe, from Figures 7
and 8, that the unidirectional solution is unstable for sta-
tionary atoms (with β0 = 0) for any detuning when the
velocity spread σ exceeds a threshold value which depends
on g0. Hence thermal motion, causing Doppler broaden-
ing, destabilizes the unidirectional solution, which is sta-
ble for cold atoms (σ = 0). For the case of Figure 7a, the
unidirectional solution is stable only for sufficiently large
values of δ and β0 with the same sign.

Figure 9 shows the evolution of x1 (continuous line)
and x2 (dashed line) as a function of τ in a case of in-
homogeneous broadening with g0 = 50 and σ = 3, for
different values of δ and β0. The results have been ob-
tained integrating numerically equations (1–7) with the
recoil artificially “switched off”, for the same parameters
of Figure 6 and the atomic velocities distributed with a
Gaussian weight around β0 with σv = 28.12 m/s, cor-
responding to a temperature of 2.18 K. In A and B,
δ = 0, β0 = 0 (Fig. 9A) and β0 = −2.5 (Fig. 9B),



N. Piovella et al.: Recoil-induced effects in a bidirectional ring laser 375

0.0

0.2

0.4

0.6

0.8

1.0

A: δ =0, β
0
=0 B: δ =0, β

0
=-2.5

 

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8
C: δ =-1, β

0
=-2.5

0 10 20 30 40 50 60

D: δ =1, β
0
=-2.5

Fig. 9. Evolution of x1 (continuous line) and x2 (dashed
line) vs. τ in an inhomogeneously broadened ring laser with
Gaussian velocity distribution, for g0 = 50, σ = 3 and differ-
ent values of δ and β0. A: δ = 0 and β0 = 0; B: δ = 0 and
β0 = −2.5; C: δ = −1 and β0 = −2.5; D: δ = 1 and β0 = −2.5.

x1(0) = x2(0) + 10−9 and x2(0) = 10−6: as in the ho-
mogeneous case, the symmetric bidirectional solution is
unstable. However, now the stable solution is the asym-
metric bidirectional solution and not the unidirectional
solution. In a similar way, in Figures 9C and 9D, where
δ = −1, β0 = −2.5, x1(0) = x2(0) = 10−6 (Fig. 9C)
and δ = 1, β0 = −2.5, x1(0) = 10−6 and x2(0) = 10−38

(Fig. 9D), the system evolves toward asymmetric bidirec-
tional solutions, although with different gains. We note the
existence, also in absence of coherent motion due to recoil
(i.e. for β0 = 0), of a asymmetric bidirectional emission in
a inhomogeneously broadened ring laser. Similar results
have been recently shown in a ring resonator driven by an
external field and containing a saturable, homogeneously
broadened absorber [26].

We note that Figures 6 and 9 have been obtained inte-
grating numerically the exact equations (1–7) for uniform
atomic motion and a set of physical parameters giving
g0 = 50, σ = 0 and σ = 3, respectively. However, the
same results can be reproduced satisfactorly by solving
numerically the reduced equation (36) for assigned values
of β0 and σ and neglecting the phase shifts Ω1,2. This con-
firms the validity of the approximations used in Section 4,
where the Fourier components of the two polarisations and
the population difference were eliminated adiabatically in
the good cavity limit, κc � γ⊥, γ‖.

6.2 Stability of the symmetric bidirectional solution

We now investigate the stability of the symmetric bidi-
rectional solution, restricting the analysis to the resonant

case (δ = 0). The symmetric bidirectional solution for a
homogeneously broadened (σ = 0), detuned (δ 6= 0) and
stationary (β0 = 0) medium is unstable, as demonstrated
in Appendix B.

Defining x± = (x1 ± x2)/2 and setting δ = 0, equa-
tions (36) can be recast in the following form

dx+

dτ
+x+ =

∫
dβf(β)g1

x++
√
x2

+−x2
−Z

1+2g1(x++
√
x2

+−x2
−Z)

(54)

dx−
dτ

+x− =
∫

dβf(β)g1
x−

1+2g1(x++
√
x2

+ − x2
−Z)

, (55)

where now g1 = g0/(1+β2) and Z = Rez0+βImz0. We lin-
earise equations (54) and (55) assuming x+ = x0 + ε+(τ)
and x− = ε−(τ), where x0 is the symmetric bidirectional
solution, satisfying equation (46), and ε± are small time-
dependent quantities. It is possible to show, from equa-
tions (25, 26, 31), that the linear term of the expansion
of z0 as powers of ε+ and ε− contains only contributions
proportional to ε+. Hence, writing Z = Z0 +C0ε+, where
Z0 is the zeroth-order term, and expanding equations (54)
and (55) up to first order in ε+ and ε−, we obtain

dε+
dτ

= x0

{∫
dβf(β)

g1[C0 − 2g1(1 + Z0)2]
[1 + 2g1x0(1 + Z0)]2

}
ε+ ≡ λ+ε+

(56)
dε−
dτ

= −
{∫

dβf(β)
g1Z0

1+2g1x0(1+Z0)

}
ε− ≡ λ−ε−. (57)

The coefficient C0 in equation (56) is evaluated in Ap-
pendix C as an infinite series. For a homogeneously broad-
ened medium, the two eigenvalues λ+ and λ− simplify to:

λ+ = x0[g1C0(1− 2x0)2 − 1] (58)
λ− = g1(1− 2x0)− 1, (59)

where we have used, from equation (47), the identity
(1 + Z0)−1 = g1(1 − 2x0). The stability of the symmet-
ric bidirectional solution for homogeneous broadening is
shown in Figure 10a, where the contour lines of λ− are
plotted vs. β0 and g0. A numerical calculation of the con-
stant C0 shows that the eigenvalue λ+ has the same sign
as λ−, so that a negative value of λ− is a sufficient indi-
cation of stability of the bidirectional solution. The light
gray color indicates a positive value of the eigenvalue, i.e.
that the symmetric bidirectional solution is unstable. The
stability region is limited by the above-threshold condi-
tion, g0 > 1 + β2, which guarantees the existence of the
stationary solution, whereas the dark grey color indicates
that the laser is below threshold. We observe that the in-
stability region of the unidirectional solution, shown in
Figure 5b, matches the stability region of the symmet-
ric bidirectional solution of Figure 10a. It is interesting
to note the existence of two regions (near β0 = ±2.5)
where the symmetric bidirectional solution and the uni-
directional solution are both stable. It may correspond
to a region of bistability where two equilibria coexists,
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Fig. 10. Contour plot of the instability rate λ− of the sym-
metric bidirectional solution and δ = 0. (a): λ− vs. β0 and g0

in a homogeneously broadened ring laser; (b): λ− vs. β0 and σ
for g0 = 50 in an inhomogeneously broadened ring laser.

as has been verified by numerical integration of the time-
dependent equations. Finally, Figure 10b shows the con-
tour lines of λ− as a function of β0 and σ when g0 = 50.
Increasing σ, the instability region of the symmetric bidi-
rectional solution around β0 = 0 increases. Hence, for in-
creasing inhomogeneous broadening an increasingly larger
value of β0 is necessary in order to stabilize the symmetric
bidirectional solution.

7 Dynamics with recoil

We discuss now the numerical solution of equations (1–7)
including recoil, for a gas of initially inverted, D(0) =
Deq = 1/2, unpolarized, S1(0) = S2(0) = 0, and un-
bunched atoms (i.e. with θ(0) uniformly distributed over
2π). Furthermore, we assume that the atomic velocities
are initially zero, β(0) = 0 (for a homogeneously broad-
ened ring laser) or normally distributed around 〈β(0)〉 = 0
(for an inhomogeneously broadened ring laser). The pa-
rameters of the simulations are close to these of a sodium

0 10 20 30 40
0.00

0.02

0.04

0.06 (c)

 

τ

σ
0 10 20 30 40

-5

-4

-3

-2

-1

0

(b)

 

τ
β

0

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

(a)

τ

x 1
,2

Fig. 11. Self-consistent dynamics with recoil in a resonant
homogeneously broadened ring laser with δ = 0, g0 = 50 and
τr = 3.2, as obtained solving the exact equations (1–7); (a) x1

(continuous line) and x2 (dashed line), (b) β0, and (c) σ, as a
function of τ .

vapor, with resonant wavelength λ = 589 nm, µ =
10−29 C m, γ⊥ = γ‖ = 6.2× 107 s−1, κc = 1.24× 105 s−1,
ωr = 6.2 × 105 s−1, Ls = 1 cm, Lcav = 1 m and
ns = 108 cm−3. The derived parameters are g0 = 50 and
τr = 3.2.

7.1 Homogeneously broadened ring laser

Figure 11a shows x1 (continuous line) and x2 (dashed
line), as a function of τ when the atoms are allowed to
recoil under the influence of the cavity modes. The gas is
initially cold, at rest and in resonance, with f(β) = δ(β)
and δ = 0. The initial intensities are x1(0) = x2(0)+10−20

and x2(0) = 10−4. Figures 11b and 11c show the evo-
lution of β0 and σ as functions of τ . The results agree
with those of Figures 6A and 6B: initially x1 = x2 and
β0 = 0, in agreement with equation (38). As shown by
the linear analysis, for β0 = 0 the symmetric bidirectional
solution is unstable and the unidirectional solution is sta-
ble, so that the mode x2 is suppressed and x1 reaches a
saturation value close to one. However, the unbalanced
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radiation pressure for x1 � x2 drives the atoms anti-
parallel to the mode x1, with the average velocity decreas-
ing as β0 ≈ −τ/τr. When β0 reaches the threshold value of
−2.6, given by equation (53), the unidirectional solution
becomes unstable and the bidirectional solution stable. Fi-
nally, β0 reaches the stationary value −4.7 when x1 = x2.
We note, from Figure 11c, that σ remains much smaller
than one, so that the inhomogeneous broadening effects
are negligible.

A simple intuitive interpretation of this result may be
given in terms of the Doppler shift due to the longitudi-
nal momentum induced by radiation pressure. An atom
moving with an axial velocity vz effectively sees two dif-
ferent Doppler-shifted frequencies ω′1,2 = ω(1∓vz/c). The
atom is resonant with the radiation when these shifted
frequencies coincide with the atomic resonance, that is,
when ω0 = ω(1∓ 〈vz〉/c). Consequently, for atomic veloc-
ities sufficiently large, two modes with equal frequencies
in the laboratory frame may be widely separated in fre-
quency in the rest frame of the atom. When ω0 = ω, i.e.
δ = 0, x1 and x2 are shifted from resonance by the same
amount but in different directions, and hence experience
equal gains g1 = g2. The separation between the two line
centers reduces the influence of one mode on the other,
making the two modes effectively uncoupled. This occurs
approximately when the frequency difference between the
line centers, k|〈v〉z |, exceeds the gain linewidth, γ⊥. In
fact, we observe from Figure 11a that x1 starts to de-
crease when β0 ≈ −1, i.e. k|〈v〉z | ∼ γ⊥. This occurs in
a time τ ∼ τr, i.e. in a typical time of the order of the
inverse of the recoil frequency ωr.

Figure 12 shows the evolution of x1 and x2, (a), β0,
(b), and σ, (c), for a blue-detuned case, δ = 1, and the
same other parameters as in Figure 11. Initially, when
β0 = 0, the symmetric bidirectional solution is unstable
and the two unidirectional solutions are stable. As in the
previous case of Figure 11a, the laser evolves toward the
unidirectional solution with x2 = 0, and β0 becomes neg-
ative, with the atoms moving anti-parallel to the field x1.
When β0 reaches the value −2.2 for which the unidirec-
tional solution is unstable, the mode x1 decays and the
mode x2 grows up to saturation in a way similar to the
case of Figure 6D; successively, β0 reaches a minimum
when x1 = x2 and then increases until it becomes posi-
tive and reaches the instability threshold for the mode x1,
β0 = 2.2. Then, x2 decays to zero and x1 grows again
to saturation. This process continues periodically, with
the modes growing alternately toward saturation and then
decaying. In this case, the unbalanced radiation pressure
induces a mean atomic velocity which Doppler-shifts the
frequency of the mode whose intensity is lower toward
resonance, pushing the other (more intense) mode further
away from resonance. The role of the two modes is ex-
changed when one intensity exceeds the other, and β0

changes sign. The growing mode reaches the maximum
when its effective frequency is resonant with the atoms,
i.e. when |β0| ≈ δ: as shown by Figure 12a, x1 and x2 are
maxima when β0 ∼ ∓1, respectively.
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Fig. 12. Self-consistent dynamics with recoil in a blue-detuned
homogeneously broadened ring laser with δ = 1 and the other
parameters as in Figure 11; (a) x1 (continuous line) and x2

(dashed line), (b) β0 and (c) σ, as a function of τ .

Figure 13a shows the behavior of the intensities of the
two modes for a red-detuned case, with δ = −1 and the
other parameters as in Figure 11. As in Figure 11a, the
symmetric bidirectional solution is unstable when β0 = 0,
and the laser evolves toward the unidirectional solution
with x2 = 0. Then, β0 becomes negative, until eventually
it is less than −3 and the unidirectional solution is unsta-
ble (see Fig. 5a for δ = −1 and β0 negative). As shown
by Figure 6C, the stable solution in this case is the asym-
metric bidirectional solution with both x1 and x2 different
from zero. Because x1 > x2, β0 continues to decreases un-
til g1,2 < 1, which occurs for β0 < −8 and β0 < −6,
respectively. Hence, in the red-detuned case (δ < 0) the
unbalanced radiation pressure induces a mean atomic ve-
locity which drives both modes below threshold.

7.2 Inhomogeneously broadened ring laser
and self-cooling

Figure 14 shows the evolution of the resonant (δ = 0) ring
laser when the medium is initially Doppler broadened with
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Fig. 13. Self-consistent dynamics with recoil in a red-detuned
homogeneously broadened ring laser with δ = −1 and the other
parameters as in Figure 11; (a) x1 (continuous line) and x2

(dashed line), (b) β0, and (c) σ, as a function of τ .

σ = 3. The other parameters are the same as in Figure 11.
The two modes behave in a way similar to the homoge-
neous broadened case, with the symmetric bidirectional
solution initially unstable when β0 = 0 and successively
stable when the atoms move antiparallel to the mode x1

with β0 = −2.3. The stability analysis (see Fig. 10b) shows
that for σ = 3 and |β0| < 4.5 the symmetric bidirectional
solution is unstable, and Figures 9A and 9B show that
neglecting recoil the laser evolves toward the asymmetric
bidirectional solution with x1 > x2. However, the decrease
of σ, shown in Figure 14c, lowers the stability threshold
for β0, as shown by Figure 10b, so that for the stationary
values of σ = 2.45 and β0 = −3.5 the symmetric solution
with x1 = x2 is stable. The slight decrease of σ during the
unidirectional emission is an interesting example of atomic
self-cooling, where the temperature of the atomic medium
decreases spontaneously during the lasing. A similar effect
was recently predicted in a passive (i.e. non-inverted) col-
lection of atoms with a finite velocity spread and driven by
an external laser beam [10]. A small probe can be exponen-
tially amplified via population difference grating effects to
a saturated value almost equal to that of the pump. In
this saturated regime the width of the velocity distribu-
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Fig. 14. Self-consistent dynamics with recoil in a resonant
inhomogeneously broadened ring laser with Gaussian velocity
distribution, with σ(0) = 3, δ = 0 and the other parameters
as in Figure 11; (a) x1 (continuous line) and x2 (dashed line),
(b) β0, and (c) σ, as a function of τ .

tion of the atomic sample decreases significatively. Here,
we observe a rather different effect, where the width σ of
the velocity distribution decreases due to the effect of a
single field. Although the narrowing of the velocity dis-
tribution curve is only about 20% in the resonant case of
Figure 14c, a more effective self-cooling is observed when
the laser is blue-detuned, as shown in Figure 15 for δ = 1
and the same other parameters as in Figure 14.

The principle at the base of the observed effect is the
same as that of optical molasses [27], in which two weak
counter-propagating laser beams are used to cool of a
collection of non-inverted atoms. The total force on an
atom can be written as the sum of the radiation pres-
sure from each of the two beams, resulting in a damp-
ing force F (v) = −αv when the laser frequency is red-
detuned with respect to the atomic resonance. The same
effect has been demonstrated using two strong counter-
propagating laser beams alternated in time [28], with 50%
duty factor and the duration of each beam longer than the
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Fig. 15. Self-consistent dynamics with recoil in a blue-detuned
inhomogeneously broadened ring laser with Gaussian velocity
distribution, σ(0) = 3, δ = 1 and the other parameters as in
Figure 11; (a) x1 (continuous line) and x2 (dashed line), (b)
β0, and (c) σ, as a function of τ .

atomic relaxation time γ−1
‖ and shorter than the damp-

ing time M/α, where M is the atomic mass. We describe
here a different situation, where the direction of the fields
is “switched” by the atoms themselves. Furthermore, it is
not necessary to chirp the frequency of the laser to man-
tain it in resonance with the atoms to decelerate, as, in
our case, they are decelerated by their own emitted field.

It is possible to give an analytical description of the
atomic self-cooling in the presence of unidirectional emis-
sion, with the mode x1 (x2) propagating along the positive
(negative) direction of the z-axis, with x2 = 0 (x1 = 0).
Assuming x1,2 and Ω1,2 stationary and given by equa-
tions (41, 42) and their respective expressions for x2

and Ω2, equations (38) and (39) become:

dβ0

dτ
= ∓(x1,2/τr) (60)

d
dτ
[
σ2 + β2

0

]
= ∓(2/τr)g0x1,2

×
∫

dβ
βf(β)

1 + g0x1,2 + (β ∓ δ)2
, (61)

where the upper (lower) sign refers to x1 (x2). Changing
the integration variable to q = β−β0 and defining f0(q) =
f(β0 + q), equation (61) with the help of equations (41)
and (60) becomes:

dσ2

dτ
= −(2/τr)g0x

∫
dq

qf0(q)
ξ2 + (q − δ0)2

, (62)

where x = x1,2, ξ =
√

1 + g0x and δ0 = δ ∓ β0. A qual-
itative examination of equation (62) allows for a simple
interpretation of the self-cooling mechanism. The func-
tion under the integral is the product of an antisymmet-
ric function qf0(q), with a maximum at q ∼ σ, and a
Lorentzian of width ξ and center at q = δ0. The integral
is positive (and therefore σ is decreasing) when the center
of the Lorentzian lies on the positive axis of q, i.e. when
δ > ±β0. Because equation (60) indicates that β0, initially
zero, decreases (increases) in the presence of the mode x1

(x2), cooling always occurs when δ ≥ 0, whereas only for
|β0| > |δ| when δ < 0. More important, the cooling oc-
curs independently of which mode propagates within the
cavity, as can be observed in Figure 15. When σ � ξ,
the optimum detuning for a maximum rate of cooling is
δ0 ∼ σ.

In the case of a Gaussian distribution f0(q) =
(1/σ
√

2π) exp(−q2/2σ2), the integral of equation (62) can
be expressed, using equation (45), in terms of error func-
tion of complex argument:

dσ2

dτ
= −(2/τr)x

[
δ0 −

g0

σ

√
π

2
Im W

(
δ0 + iξ√

2σ

)]
, (63)

where W (z) = exp(−z2)erfc(−iz). A relatively simple ex-
pression can be obtained assuming that the velocity dis-
tribution function has a Lorentzian shape, with f0(q) =
(σ/π)/(σ2+q2). In this case, the integrals in equations (62)
and (41) can be explicitely evaluated giving,

τr
dσ
dτ

= − δ0x

ξ + σ
, (64)

where ξ is the solution of the cubic equation g0(ξ + σ) =
ξ[δ2

0 + (ξ + σ)2]. We observe from equation (64) that, for
δ0 > 0, σ decreases monotonically in the presence of either
x1 or x2, in agreement with the previous discussion.

An approximate expression of the atomic self-cooling
can be obtained for small values of σ: evaluating asymp-
totically the function W (z) in equations (44) and (63), a
straightforward calculation yields, for σ �√g0:

τr
dσ
dτ

= −2δ0x
g0

σ, (65)

so that

σ(τ) = σ(0) e−(2δ0x/g0)(τ/τr). (66)

The opposite limit of large inhomogeneous broadening,√
g0 � σ < g0, can be obtained from equation (64) as

τr
dσ
dτ

= − δ0g0σ

(δ2
0 + σ2)2

, (67)
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showing that in general the self-cooling is less efficient for
initially large velocity spread. In particular, we observe
that the r.h.s term of equation (67) presents a maximum
of −0.32g0/σ

2 for the optimum detuning δ0 = σ/
√

3.
The results obtained neglect the influence of momen-

tum diffusion due to spontaneous emission, which is re-
sponsible for the well-known Doppler-cooling limit [28]. In
fact, atoms undergoing spontaneous emission emit pho-
tons in random directions. Consequently, the atoms feel
randomly directed momentum “kicks” of magnitude ~k.
The long term effect of this is to cause a random walk in
momentum space. In an ideal one-dimensional situation,
after N emissions, according to the usual random-walk
theory, the mean square velocity is 〈v2〉 ≈ N(~k/M)2t =
ρbbγ‖(~k/M)2t [29], as N = ρbbγ‖t, where ρbb is the prob-
ability of finding an atom in the upper state |b〉. In the
scaled notation of this paper,

σ2
diff ≈ (ωr/γ⊥)

1 + δ2
0

g0
(τ/τr), (68)

where we have assumed saturation, x ≈ 1, ρaa ≈ 0, and
ρbb ≈ D = Deq(1 + δ2

0)/g0. Including the heating con-
tribution due to momentum diffusion, equation (65) is
modified as:

τr
dσ2

dτ
≈ −4δ0

g0
σ2 + (ωr/γ⊥)

1 + δ2
0

g0
, (69)

which shows that σ2 tends asymptotically toward the limit

σ2
Dop =

1 + δ2
0

4δ0
(ωr/γ⊥), (70)

which minimizes for δ0 = 1, giving σ2
Dop = ωr/2γ⊥, i.e.

the well-known Doppler-cooling limit TDop = ~γ⊥/kB.
Finally, we test the reduced model of equa-

tions (36–39), assuming the Gaussian distribution (40) for
the atomic velocities. The result of the numerical integra-
tion of the reduced model for g0 = 50, δ = 1, τr = 3.2 and
the same initial conditions as in Figure 15 is shown in Fig-
ure 16: we observe that the solution of the reduced model
describes the solution of the exact equations (1–7) quite
satisfactorly, both for the fields and the atomic motion,
although the cooling shown in Figure 15 is less than that
of Figure 16, perhaps because the real velocity distribu-
tion differs from the ideal Gaussian distribution assumed
in the reduced model. Figure 17a shows histograms of the
velocity distribution for the case of Figure 15, as obtained
form the multi-particle simulations at τ = 0 and τ = 60.
Finally, a numerical study has shown that self-cooling can
be optimized with a suitable choice of the recoil time τr:
Figure 17b reports the best result obtained for τr = 2 and
the other parameters as in Figure 15. The continuous and
dashed lines show σ vs. τ as obtained by numerical integra-
tion of the multi-particle model and of the reduced model,
respectively. We observe a monotonic decrease of σ, from
σ = 3 to σ = 0.1 after τ = 130.
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Fig. 16. Solution of the reduced equations (36–39), for the
same parameters as in Figure 15; (a) x1 (continuous line) and
x2 (dashed line), (b) β0, and (c) σ, as a function of τ .

8 Discussion and conclusions

We complete the description of the effects of the atomic
motion in a bidirectional ring laser with a short discussion
of their possible observation in a realistic experiment. The
main difficulty consists in finding an atomic vapor where
population inversion can be created without destroying
the coherent motion induced by recoil. For this reason, in-
coherent methods creating population inversion by electric
discharge or collisions in a buffer gas are not useful. We
have focused our attention on the possibility of obtaining
inversion of population in a sodium vapor. In literature it
has been reported light amplification at the 589-nm line
in a dense sodium vapor excited by laser pulses tuned
near the 3S → 4P transition (λ = 330 nm) [30]. In these
circumstances the Na(4P ) atoms are depopulated as a re-
sults of cascade-stimulated emission. The same cascades
populate the Na(3P ) atoms so efficiently that the inver-
sion of population between the 3P and the 3S occurs. The
duration of the 330-nm light pulse, obtained by frequency-
doubling of pulses from a dye laser, was only 7 ns and
the population inversion was obtained only for some tens
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Fig. 17. (a): Histograms of the velocity distribution f(β) vs.
β as obtained from the multi-particle simulation of Figure 15,
at τ = 60 and τ = 0. (b): σ vs. τ for τr = 2 and the other
parameters as in Figure 15, as calculated from the exact equa-
tions (continuous line) and from the reduced equation (dashed
line).

of ns, whereas the typical time required to observe recoil
effects is of the order of tens of µs. Nevertheless, we have
estimated which should be the typical parameters in an
experiment where steady-state population inversion could
be created between the 3S and 3P levels or the 4S and
4P levels in a sodium vapor.

In the first case, 3S → 3P (λ = 589 nm), the recoil
frequency is ωr = 6.3×105 s−1, the recoil time is tr ≈ 3 µs
and γ⊥ = γ‖/2 = 3.1×107 s−1 We assume an optical cav-
ity with Lcav = 1 m and κc = 0.1 γ‖, with a quality factor
Q = 5× 108. The instability of the unidirectional solution
can be observed for σ ≤ 2, which corresponds to a thermal
rms velocity σv less than 6 m/s and a vapor temperature
less than 94 mK. The average velocity threshold is of the
order of 3 m/s and the atomic drift along the z-axis is
less than 10 µm in one recoil time tr. Assuming that the

length of the vapor cell is Ls = 1 cm, a gain-to-loss ratio
g0 = 100 can be achieved with a sample density of about
109 atoms/cm3. The vapor can be spontaneously cooled
down to the temperature limit of TDop = 240 µK.

We have considered also as a possible example the
transition 4S → 4P (λ = 2210 nm) for sodium atoms,
with recoil frequency ωr = 4.5 × 104 s−1. Neglecting the
relatively very weak spontaneous transition 4P → 3D, the
scheme is that of a four-level atom. A calculation similar
to that presented in appendix A shows that a pump laser
tuned at the 3S → 4P transition with I0 ≈ 100 mW/cm2

produces population inversion between the 4S and 4P lev-
els, with Deq = −0.16 and γ‖ = 2γ⊥ = 6.8 × 107 s−1. In
this case, from the condition σ < 2 it follows that the
thermal velocity must be less than 24 m/s, i.e. T < 1.6 K,
whereas the temperature limit is TDop = 260 µK. The av-
erage velocity threshold is 12 m/s and the atomic drift
along the z-axis about 1 mm in one recoil time tr. The
larger recoil time and velocity threshold require a larger
vapor cell. Assuming Ls = 10 cm and the same optical
cavity as before, a gain-to-loss ratio equal 100 requires a
sample density of about 107 atoms/cm3. We note that a
stable bidirectional emission can be achieved also with
a steady-state flow of cold atoms through the cavity.

In conclusion, we have presented a study of the effect of
the atomic motion in a bidirectional ring laser in which the
active medium is a cold atomic vapor with Gaussian inho-
mogeneous broadening. We have studied how the atomic
velocity, due either to recoil or thermal motion, influences
the stability of the unidirectional and bidirectional emis-
sions. These effects are due to the Doppler shift of the
resonance frequency caused by the recoil motion. When
the splitting of the two effective resonant frequencies seen
by the two counter-propagating fields becomes of the order
of the linewidth γ⊥, the two modes propagate uncoupled
inside the ring cavity. The time scale of the variation of
the atomic velocity is of the order of the inverse of the
recoil frequency ωr, whereas the time scale of variation
of the mode intensity is of the order of the photon life-
time in the cavity, (2κc)−1. We have found that the uni-
directional emission is unstable if either the average ve-
locity and the velocity distribution width are larger than
a threshold value. If the mode frequency is resonant with
the atoms, the bidirectional emission is stable, whereas if
the mode frequency is blue-detuned, unidirectional emis-
sion in alternately opposite directions is observed. The re-
sults of the stability analysis are in a good agreement with
the observed behavior obtained by numerical integration
of the dynamical equations. Finally, we have shown that
a warm atomic vapor can experience a continuous self-
cooling down to the Doppler-cooling limit temperature.

Appendix A: Population inversion

It is well known that population inversion cannot be
achieved by resonant absorption of light at the transition
frequency of two states. However, a population difference
can be achieved for levels a and b (see Fig. 2) by exper-
iments that makes use of three levels. We consider the



382 The European Physical Journal D

x+ = g0

Z
dβf(β)

(1 + δ2 + β2)x+ + 2δβx− +
q
x2

+ − x2
−C+

1 + 2(δ2 + β2) + (δ2 − β2)2 + 2g0[(1 + δ2 + β2)x+ + 2δβx− +
q
x2

+ − x2
−C+]

(79)

x− = g0

Z
dβf(β)

(1 + δ2 + β2)x− + 2δβx+ + δ
q
x2

+ − x2
−C−

1 + 2(δ2 + β2) + (δ2 − β2)2 + 2g0[(1 + δ2 + β2)x+ + 2δβx− +
q
x2

+ − x2
−C+]

(80)

g0

Z
dβf(β)

1 + δ2 + β2 + C+

1 + 2(δ2 + β2) + (δ2 − β2)2 + 2g0x[1 + δ2 + β2 +C+]
= 1 (81)

δ

Z
dβf(β)

2β + C−
1 + 2(δ2 + β2) + (δ2 − β2)2 + 2g0x[1 + δ2 + β2 + C+]

= 0. (82)

states a and b as excited states and the state g as the
ground state. A laser beam is used to excite the transition
g → b with a pump rate λ. An atom in level b decays to
levels a or g with spontaneous rates γab and γbg, whereas
an atom in the level a decays to the level g with sponta-
neous rate γag. We assume ρgg + ρaa + ρbb = 1, where ρii
is the probability of occupation of the ith level. The rate
equations for the three levels are:

ρ̇gg = −λ(ρgg − ρbb) + γbgρbb + γagρaa, (71)
ρ̇aa = γabρbb − γagρaa, (72)
ρ̇bb = λ(ρgg − ρbb)− (γbg + γab)ρbb. (73)

We introduce D = ρbb − ρaa and D0 = ρaa − ρgg as the
population differences between the transitions a→ b and
g → a. As the transition g → a is not driven by the radi-
ation in the cavity, we can set the time derivative of D0

equal to zero in the steady state, and arrive to the follow-
ing equation for the population difference of the driven
transition a→ b:

Ḋ = −γ‖(D −Deq) (74)

where

γ‖ =
3λ(2γag + γab) + 3γag(γab + γbg)

3λ+ 2γag − γab + γbg
(75)

Deq =
λ(γag − γab)

λ(2γag + γab) + γag(γab + γbg)
· (76)

It is evident from equation (76) that in order for Deq to be
positive, i.e. ρbb larger than ρaa, the condition γab < γag
must be satisfied. In words, the atoms excited into state
b must decay relatively slowly into state a, from where
they drop rapidly back into the ground state g. For strong
pumping (λ� γab + γbg),

γ‖ ≈ 2γag + γab (77)

Deq ≈ γag − γab
2γag + γab

· (78)

We note that the maximum possible value for D is 1/2,
when the transition between the states g and b approaches
saturation and when γab � γag.

Appendix B: Bidirectional stationary solutions

We discuss in detail the general form of the stationary
bidirectional solutions. Introducing x± = (x1±x2)/2 and
setting the time derivative equal to zero, equation (36)
may be written as:

see equations (79, 80) above,

where C+ = (1 + δ2 + β2)Rez0 + β(1− δ2 + β2)Imz0 and
C− = 2βRez0 − (1 + δ2 − β2)Imz0. From equations (79)
and (80), the symmetric bidirectional solution, with x− =
0 (i.e. x1 = x2) and x+ = x, must satisfy the following
two equations:

see equations (81, 82) above.

Equation (82) is always satisfied when δ = 0, so the sym-
metric bidirectional solution may exist in the resonant
regime. In the detuned regime, with δ 6= 0, equation (82)
can never be true for Doppler broadending, whereas it
may be satisfied for homogeneous broadening and β0 = 0,
i.e. for f(β) = δ(β). In fact, β = 0 implies that Ln,m = 1,
αn = 1+2g1x and βn = g1x, where g1 = g0/(1+δ2). From
equation (31) it follows that z0 is real, so that C− = 0
and equation (82) is satisfied. Furthermore, equation (31)
becomes independent on n and can be solved explicitly,
giving z0 = (

√
1 + 4g1x+ 8g2

1x
2 − 1− 2g1x)/2g1x. From

equation (81) it is straightforward to demonstrate that the
bidirectional solution is

x =
1
2

[
1− 1

4g1

(
1 +

√
1 + 8g1

)]
. (83)
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From equation (33), it follows also that d0 =
Deq/

√
1 + 4g1x and, as dn = zn0 d0,

D(θ) = d0

[
1 +

∞∑
n=1

zn0 einθ + c.c.

]
=

Deq

1 + 4g1x cos2(θ/2)
·

A stability analysis shows that the bidirectional solu-
tion (83) is unstable. In fact, linearizing the motion equa-
tions for x+ and x− around (83), assuming x+ = x+ ε+
and x− = ε− with ε± ∝ exp(λ±τ), it is easy to show that
λ+ = λ− = (

√
1 + 8g1−3)/4, which is positive for g1 > 1.

We now discuss the general stationary solutions in the
resonant regime. When δ = 0, equations (79) and (80)
simplifies into:

x+ = g0

∫
dβf(β)

x+ +
√
x2

+ − x2
−Z

1 + β2 + 2g0[x+ +
√
x2

+ − x2
−Z]

(84)

x− = g0x−

∫
dβ

f(β)

1 + β2 + 2g0[x+ +
√
x2

+ − x2
−Z]

, (85)

where Z = Rez0 + βImz0. Equation (85) is satified either
for x− = 0 and x+ = x (which is a particular case of the
symmetric bidirectional solution discussed before), where
x is the solution of the implicit equation

g0

∫
dβf(β)

1 + Z

1 + β2 + 2g0x[1 + Z]
= 1, (86)

or for x− 6= 0 and

g0

∫
dβ

f(β)

1 + β2 + 2g0[x+ +
√
x2

+ − x2
−Z]

= 1,

which, once substituted into equation (84), implies√
x2

+ − x2
−

∫
dβ

f(β)Z

1 + β2 + 2g0[x+ +
√
x2

+ − x2
−Z]

= 0.

This last equation is satisfied when x+ = ±x−, i.e. when
either x2 = 0 or x1 = 0 (unidirectional solution), or for
x2

+ 6= x2
−, when the following two equations are satisfied:∫

dβ
f(β)Z

1 + β2 + 2g0[x+ +
√
x2

+ − x2
−Z]

= 0 (87)

g0

∫
dβ

f(β)

1 + β2 + 2g0[x+ +
√
x2

+ − x2
−Z]

= 1. (88)

This last case corresponds to the asymmetric bidirectional
solution, with x1 6= x2 and both x1 and x2 different from
zero, and it exists only for inhomogeneous broadening.

In conclusion, the symmetric bidirectional solution
may exist either in the resonant regime or, in the case of
homogeneous broadening, when δ 6= 0 and β0 = 0 (but in

this last case is unstable). The asymmetric bidirectional
solution may exist in the following three cases: (a) de-
tuned regime with inhomogeneous broadending; (b) de-
tuned regime with homogeneous broadening and β0 6= 0;
(c) resonant regime with inhomogeneous broadening, if
equations (87) and (88) are simultaneously satisfied.

Appendix C: Evaluation of C0 in equation (56)

Assuming resonance, δ = 0, and using (29), equations (25)
and (26) become

αn = 1 + 2inγβ + g0[ξn + ξn+1]x+

βn = g0ξn

√
x2

+ − x2
−

where ξn = (1 + i(2n − 1)β)−1. Assuming x+ = x0 + ε+
and x− = ε−, we expand zn in equation (31) up to the
first order of ε+ and ε−, obtaining zn ∼ z(0)

n +cnε+, where
z

(0)
n is the zero-order term and

cn−1 = Ancn +Bn−1, (89)

where An = [z(0)
n−1]2(ξn+1/ξn) and Bn = −{[1 + 2i(n +

1)γβ]/g0x
2
0}[z

(0)
n ]2/ξn+1. Equation (89) can be solved nu-

merically by iteration to give c0 = B0 +A1B1 +A1A2B2...
Finally, Z = Rez0 + βImz0 = Z0 + C0ε+, where Z0 =
Rez(0)

0 + βImz(0)
0 and C0 = Rec0 + βImc0.
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